Algebraic Geometry Lecture 17 – Categories and stuff

$\mathsf{Joe}\ \mathsf{Grant}^1$

Motivating example: Sets and functions.

Defⁿ. A category C is a collection of *objects*, ob(C), and *morphisms/maps/arrows*, mor(C), which each have a source and a target in ob(C). If $f \in mor(C)$ and the source of f is s(f) = X, and its target is t(f) = Y, then we write $f : X \to Y$.

- For each $c \in ob(\mathcal{C})$, there is a unique distinguished morphism id_c .
- We have composition: if $f : X \to Y$ and $g : Y \to Z$ then there is a composite $g \circ f : X \to Z$, subject to:
 - Associativity: for each $f, g, h \in mor(\mathcal{C})$, we have $(f \circ g) \circ h = f \circ (g \circ h)$ whenever this is defined.
 - Identity: $f \circ id_X = f$ and $id_Y \circ f = f$.

Examples.

Category	Objects	Morphisms
Set	Sets	Functions
Grp	Groups	Group homomorphisms
Ab	Abelian groups	Group homomorphisms
Top	Topological spaces	Continuous maps
Toph	Topological spaces	Continuous maps up to homotopy

The above examples all have sets as their objects. This is "nice" because their objects have elements, e.g. $x \in X \in ob(Set)$. Such categories are called concrete.

Other examples.

A poset (S, \leq) is a set S with a partial ordering. We can describe this as a category C. Let ob(C) = S and non-identity morphisms be:

for $x, y \in S$ there is a unique morphism $f : x \to y$ if and only if $x \leq y$.

Composition follows from the transitive law for posets: if $x \leq y$ and $y \leq z$ then $x \leq z$.

In sets we like knowing when a function is injective or surjective. We say a morphism $m: X \to Y$ is monic (like an injection) if for every $f: W \to X$ and $f': W \to X$ we have $m \circ f = m \circ f' \Rightarrow f = f'$.

We call a morphism $e : X \to Y$ epi (surjective) if for every $f : Y \to Z$ and $f' : Y \to Z$ we have $f \circ e = f' \circ e \Rightarrow f = f'$.

If a morphism f is both monic and epi then we call f and *isomorphism*.

¹Notes typed by Lee Butler based on a lecture given by Joe Grant. Any errors are the responsibility of the typist. Or the US sub-prime mortgage crisis.

Remarks.

Let G be a group. Define a category C such that $ob(C) = \{*\}$ and mor(C) = G. So groups are one-object categories with invertible morphisms.

In the good old days (≤ 1950) we would write a function with domain X and codomain Y as $f(X) \subset Y$. The notation $f: X \to Y$ comes from category theory.

Functors.

Defⁿ. A functor $F : \mathcal{C} \to \mathcal{D}$ for categories \mathcal{C} and \mathcal{D} is a function that takes $ob(\mathcal{C})$ to $ob(\mathcal{D})$ and $mor(\mathcal{C})$ to $mor(\mathcal{D})$, such that if $f : X \to Y$ then $F(f) : F(X) \to F(Y)$, and:

- $F(\mathrm{id}_c) = \mathrm{id}_{F(c)}$ for all $c \in \mathrm{ob}(\mathcal{C})$.
- If $g, f \in \operatorname{mor}(\mathcal{C})$ then $F(g \circ f) = F(g) \circ F(f)$ in \mathcal{D} .

There are a lot of functors.

E.g. 1. The identity functor $F : \mathcal{C} \to \mathcal{C}$.

E.g. 2. \mathcal{P} : Set \rightarrow Set, the power set functor. Let $X \in ob(Set)$, then

$$\mathcal{P}(X) = \{ Y \mid Y \subseteq X \}.$$

Let $f : X \to Y$ be a function. To define \mathcal{P} we need a function F such that $F(f) : \mathcal{P}(X) \to \mathcal{P}(Y)$. Let $X' \in \mathcal{P}(X)$, i.e. $X' \subseteq X$. Then define

$$F(f)(X') = f(X') \subseteq Y.$$

So $F(f)(X') \in \mathcal{P}(Y)$.

E.g. 3. Let G, H be two groups and $\mathcal{C}_G, \mathcal{C}_H$ be the categories associated to them. Then a functor $F : \mathcal{C}_G \to \mathcal{C}_H$ is a homomorphism. There is only one object in each of $ob(\mathcal{C}_G)$ and $ob(\mathcal{C}_H)$ so there are no worries there. On morphisms,

$$F(f_g \circ f_{g'}) = F(f_g) \circ F(f_{g'})$$

is the same as

$$\varphi(gg') = \varphi(g)\varphi(g').$$

Natural transformations.

Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{C} \to \mathcal{D}$ be two functors. We want to define a natural transformation " $F \Rightarrow G$ " or " $F \rightarrow G$ ".

We define the natural transformation, η . We want a map $F(c) \mapsto G(c)$ for each $c \in ob(\mathcal{C})$. This map must be "nice". Define the map $F(c) \to G(c)$ by η_c . So a natural transformation is, for each $c \in ob(\mathcal{C})$, an assignment $F(c) \to G(c)$ denoted by η_c such that for all $f: c \to d$ in \mathcal{C} the following diagram commutes:

 $\mathbf{2}$

